Dirac Operators on Quantum Weighted Projective Spaces
نویسندگان
چکیده
منابع مشابه
Dirac Operators on Quantum Projective Spaces
We construct a family of self-adjoint operators DN , N ∈ Z, which have compact resolvent and bounded commutators with the coordinate algebra of the quantum projective space CPq, for any ` ≥ 2 and 0 < q < 1. They provide 0-dimensional equivariant even spectral triples. If ` is odd and N = 1 2 (` + 1), the spectral triple is real with KO-dimension 2` mod 8.
متن کاملOrbifold Quantum Cohomology of Weighted Projective Spaces
In this article, we prove the following results. • We show a mirror theorem : the Frobenius manifold associated to the orbifold quantum cohomology of weighted projective space is isomorphic to the one attached to a specific Laurent polynomial, • We show a reconstruction theorem, that is, we can reconstruct in an algorithmic way the full genus 0 Gromov-Witten potential from the 3-point invariants.
متن کاملcompactifications and function spaces on weighted semigruops
chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...
15 صفحه اولWeighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملGeodesics on Weighted Projective Spaces
We study the inverse spectral problem for weighted projective spaces using wave-trace methods. We show that in many cases one can “hear” the weights of a weighted projective space.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebras and Representation Theory
سال: 2015
ISSN: 1386-923X,1572-9079
DOI: 10.1007/s10468-015-9536-9